几何法证明不等式
《几何法证明不等式》证明书
几何法证明不等式用解析法证明不等式:
[(a+b)/2]^2<(a^2+b^2)/2
(a,b∈R,且a≠b)
设一个正方形的边为C,有4个直角三角形拼成这个正方形,设三角形的一条直角边为A,另一条直角边为B, (B>A) A=B,刚好构成,若A不等于B时,侧中间会出现一个小正方形,所以小正方形的面积为(B-A)^2,经化简有(B+A)^2=4AB,所以有((A+B)/2)^2=AB,又因为(A^2+B^2)/2>=AB,所以有((A+B)/2)^2<=(A^2+B^2)/2,又因为A不等与B,所以不取等号
可以在直角三角形内解决该问题
=[(a+b)/2]^2-(a^2+b^2)/2( 散文阅读:www.sanwen.net )
=<2ab-(a^2+b^2)>/4
=-(a-b)^2/4
<0
能不能用几何方法证明不等式,举例一下。
比如证明 SIN x不大于x (x范围是0到 兀/2,闭区间)
做出一个单位圆,
以O为顶点,x轴为角的一条边
任取第一象限一个角x,
它所对应的弧长就是1*x=x
那个角另一条边与圆有一个交点
交点到x轴的距离就是 SIN x
因为点到直线,垂线段长度最小,
所以SIN x 小于等于 x,当且尽当x=0时,取等
已经有的方法:第一数学归纳法2种;反向归纳法(特殊到一般从2^k过渡到n);重复递归利用结论法;凸函数性质法;
能给出其他方法的就给分
(a1+a2+...+an)/n≥(a1a2...an)^(1/n)
一个是算术,一个是几何。人类认认识算术才有几何,人类吃饱了就去研究细微的东西,所以明显有后者小于前者的结论,这么简单都不懂,叼佬就是叼佬^_^
搞笑归搞笑,我觉得可以这样做,题目结论相当于证
(a1+a2+...+an)/n-(a1a2...an)^(1/n)≥0
我们记f(a1,a2,……,an)=(a1+a2+...+an)/n-(a1a2...an)^(1/n)这时n看做固定的。我们讨论f的极值,它是一个n元函数,它是没有最大值的(这个显然)
我们考虑各元偏导都等于0,得到方程组,然后解出
a1=a2=……=an
再代入f中得0,从而f≥0,里面的具体步骤私下聊,写太麻烦了。
要的是数学法证明也就是代数法 不是用向量等几何法证明.....有没有哪位狠人帮我解决下
【柯西不等式的证明】 二维形式的证明
(a^2+b^2)(c^2+d^2)(a,b,c,d∈R)
=a^2·c^2 +b^2·d^2+a^2·d^2+b^2·c^2
=a^2·c^2 +2abcd+b^2·d^2+a^2·d^2-2abcd+b^2·c^2
=(ac+bd)^2+(ad-bc)^2
≥(ac+bd)^2,等号在且仅在ad-bc=0即ad=bc时成立。
一般形式的证明
求证:(∑ai^2)(∑bi^2) ≥ (∑ai·bi)^2
证明:
当a1=a2=…=an=0或b1=b2=…=bn=0时,一般形式显然成立
令A=∑ai^2B=∑ai·biC=∑bi^2
当a1,a2,…,an中至少有一个不为零时,可知A>0
构造二次函数f(x)=Ax^2+2Bx+C,展开得:
f(x)=∑(ai^2·x^2+2ai·bi·x+bi^2)=∑ (ai·x+bi)^2≥0
故f(x)的判别式△=4B^2-4AC≤0,
移项得AC≥B,欲证不等式已得证。