导数证明不等式

2014-04-12

《导数证明不等式》证明书

导数证明不等式一、

当x>1时,证明不等式x>ln(x+1)

f(x)=x-ln(x+1)

f'(x)=1-1/(x+1)=x/(x+1)

x>1,所以f'(x)>0,增函数

所以x>1,f(x)>f(1)=1-ln2>0( 散文阅读:www.sanwen.net )

f(x)>0

所以x>0时,x>ln(x+1)

二、

导数是近些年来高中课程加入的新内容,是一元微分学的核心部分。本文就谈谈导数在一元不等式中的应用。

例1. 已知x∈(0, ),

求证:sinx